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Summary. In this paper, the recoupling procedure in the unitary group 
for double tensor operators is presented using the embedding for the three 
group chains U(n =nl +n2) ~ U(nl) x U(n2); U(nl +2)  D U(n~ + 1) ~ U(nl); 
U(n 2 + 2 ) ~  U(n 2 + 1 ) ~  U(n2). It is a new algorithm for the calculation of 
matrix elements of U(n) generator products in partitioned bases. 
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1. Introduction 

Since its introduction for many-electron systems [1-3], the application of the 
unitary group approach (UGA) in quantum chemistry has been developed 
more and more. The UGA formalism has been employed in configuration 
interaction (CI) calculations, electron propagator theory, the coupled cluster 
approach, many-body perturbation theory, and MC SCF approaches [4-10]. 
The UGA developments were also extended to the case of more general, more 
than two,column irreducible representations (IRs) [11, 12]. 

Recently, an efficient partitioning [ 13-15] was developed: 

U(n = nl +n2) ~ U(nl) x U(n2). 

The number of basis function can be dramatically decreased thereby. Fur- 
thermore, Li and Paldus [16] developed and summarized the unitary group 
tensor operator algebras for many-electron systems, in which standard 
Clebsch-Gordan coefficients and isoscalar factors for the unitary group 
were extended to transformation coefficients and corresponding isoscalar 
factors relating Gelfand bases to partitioned bases. Then, the calculation of 
the matrix elements between partitioned bases can be reduced by a "segment" 
method. 

Lin [15] achieved another "global" insight by the derivation of generalized 
coupling coefficients relating the matrix elements between canonical bases to 
those between non-canonical bases. It is the aim of this paper to extend the 
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results of Ref. [15] to two-body operator matrix elements 

[v~][v~] _ .  I[v]; Iv1] [v~]~ 
[v]; w'l, w~ L2~ wl, w~ / 

by the recoupling procedure [ 17] together with the subgroup embedding technique. 
Because of the Hermiticity relation: 

E + =Eji, 

it will be necessary to consider three types of two-body operators, namely: 

type I EzE1 = EL EL 

II E2E 1 = EREL 

III E2E1 = ErER, 

where ER refers to raising operators and EL to lowering operators. 
This paper is organized as follows: a short review is outlined in Sect. 2. In Sect. 

3, the shifts are discussed. The detailed recoupling procedures are treated in Sect. 
4 where the corresponding tables are presented, and finally, in Sect. 5 an example 
is given to illustrate how to use the given tables. 

2. Short review for the case of the one-body operator 

We assume the reader to be familiar with [ 15]. In this section, we just repeat some 
of its results. The same symbols as in [15] will be used here. To avoid ambiguities, 
the indices a, b refer to the orbitals of U(nl) and i , j  refer to those of U(n2), namely: 

1 <~ a, b <~ na, (2.1) 
nl + 1 <~ i , j  <~nl +n2=n.  

A superscript of single prime refers to the final state, and double prime to the 
intermediate state. 

The conclusion in [15] was that, in the non-trivial cases, the matrix elements 
of the one-body operator Eia between the non-canonical bases adapted to: 

U(n = nl + n2) ~ U(nl) × U(n2) (2.2) 

can be expressed as the product of U(n, + 1) and U(n2 + 1) matrix elements, times 
a generalized recoupling factor A: 

[V',][V~] [El; W/l, W i l~ia [V]; [VII[V2] ~ 
Wl, w2/ 

/[Vnl/+ - 1] Enl+ [Vnl+ 1]\ /[Vn2~ 1] [Vn2+ 1] \ 
---A" / [Vd ,,o [V1] ) ' ~  IV2] IEi,nl+n2+l [V2] ), (2.3) 

\ w', Wl / \ w~ I w2 / 

where the groups U(n 1 -~-l) and U(n2+ 1) satisfy the following embedding 
condition: 

U(n, + l) ~ U(nl) (2.4) 

U(n 2 -}- 1) ~ U(n2). 
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The generalized recoupling coefficient A in Eq. (2.3) is only dependent on the IRs 
in the group chains of Eqs. (2.2) and (2.4). 

If  [V1] × IV2] denotes the irreducible representations of U(nl) × U(n2), and 
the explicit labels [2~ p), 2(2 p)] are introduced instead of [Vp], where 2~ p) is the 
number of boxes in the qth column of the Young diagram [Vp], then all the four 
shifting effects for the case 

(1) 

(2) 

(3) 

of many-electron systems are as follows: 

[,~9 ) - l ,  ,~(2"] x [,~:~ + l ,  ;@] 

[~1) _ _  1, 2( ')] x [2~ 2), 2(2 2) + 1] 

[~1) ~(1)_ l] X [~2) _~_ l, /], (2)] 
(2.5) 

(4) t-oH(l)l , "~'~(1)2 - -  1] x [2~ 2), 2(2 2) + 1], 

The explicit formulae for the coefficient A in different shifts were derived in [1 5]. 
It should be mentioned that these A's correspond to a special choice of the IRs 
of [Vnl + l] and [Vn2+ 1], namely: 

[G ,  + 1] = [ G ]  + [1, 1], 

[Vn 2 + 1] = IV2]. 
(2.6) 

It is also allowed to use other choices of IRs, and therefore different sets for A's 
may be obtained. 

3. Discussion of the shifts caused by the two-body operator E2E 1 

From Sect. 2 it is known that there are four cases of shift for a one-body 
operator acting on a non-canonical basis 

IV]; [ G ] [ v : ] \  
Wl, W2/" 

Obviously, there may be 4 x 4 = 16 cases of shift for two one-body operators 
acting in succession. Therefore a double index pq (p, q = l . . . . .  4) can be used 
to label the 1 6 different shift cases, where p refers to the shift caused by E2, and 
q refers to El. On the other hand, however, there may be three different kinds of 
shift in each subgroup IR after the action of E2E1. For example, for type I 
(ELEL) the three possible shifts for [//1] are: 

and for [V2] 

(a) [~{1), ~(I)__ 21 

(/~) [ ,~?)-  1, ,~ (~"-  1] 

(,~,) [/~1) --  2,  2(2 ~)] 

(a') [2 ~2), 2 (22) + 2] 

(fl,) [2~2) + 1, 2(22) + 1] 

(7') [2 ~2) + 2, 2 (22)]. 

(3.1) 

(3.2) 
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Table 1. The definitions of shift cases pq 

Hai-lun Lin 

Type I (ELEL) 

p [V]] x [v~] 

[(2~'))" - 1, (2~1)) "1 x [(2t2))" + 1, (4(22)) "] 1 

[(2~1))" - -  1, (2(2o) "] x [(2t2)) ", (2(22))"+ 1] 2 

[(2t~)) ", (2(2o)" - 1] x [(2~2)) " + 1, (2(22)) "] 3 

[(hi'))", (2(2~)) " - 11 x [(2t:)) ", (2(22)) " + iI 4 

q [V~] x IVY] 

[2?)  - 1, 2(2 ~)] x [2~ 2) + a, ~2)] 

[2?) - a, ~(2')1 x [2t 2), 2(22) + a] 

[~(0 ~(t) 1] x [2~ 2) + 1, 2(2 2)] 

[2~ 1 ) , 2 ~  1 ) - 1 ]  × t[4(2)1 , 4(2)2 - -  "~ 1] 

Type III  (ELEg) 

p [VII x [v~] 

[(2]o) " - I, (2(21)) "] x [(2?))" + 1, (2(22)) "] 

[(2~1))" - l ,  (2(2'))"] x [(2~2)) ", (2(22))"+ l ]  

[(2t~)) ", (2(2o)" - 1] x [(2~2)) " + 1, (2(22)) "] 

[(2t')) ", (2(2~)) " -  1] x [(2~2)) ", (2(22))"+ 1] 

q [V]'] x [V~'] 

[2~ 1) q- 1, 2(2 ~)] x t[~(2)l - -  l ,  4 (2)12 l 

[A~ ~) + 1, 2(2 o] × t [4(2)1 , 4(2)2 -- 1] 

[2 (o  2(o ~- 1] x [2~ ~) - 1, ,~.(22)1 1 ~ 2 

4 1) 4 (1) ~- 1] X [2 (2) 4 (2) - -  1] 1 ~ 2 t ~- 1 ~ 2 

Type II (EREL) 

p [V]] x [V~] 

[(2~1)) " + 1, (2(20),,] x [(2t2)) " - 1, (2(22))"1 

[(2t '))" + 1, (2(2'))"] × [(2~2)) ", (2(22)) " -  l] 

[(27))", (2(2o)" + 1] × [(2~2)) " - 1, (;~(2~))"] 

[(27))", (~(21)),, + 1l x [(2~2)) ", (~(22)),, _ l] 

q [V~] x [V~] 

[~t '~ - 1, 2~ ~)] x [2~)  + 1, 2(22)1 

[2~ 1) - 1, 2(201 × [27 ~, 2(22) + 11 

[2(1), 2(2') - 11 x [2~ 2) + 1, 2(22)] 

[2tl), ~(21)_ 1] X [2t 2), 4(22) -~ 1] 

Table 2. The definitions of  shift kinds xy 

Type I (ELEL) Type II (EREL) and type III (ELER) 

x [v~] x [v~] 

[2to , 2(2 ° _ 21 ~ [2(11) + 1, 2(2 I) - 1] 

[~?) - 1, 2(21) _ 1] ~ [27), 22)] 

[~?) - 2, 2(2')] ~ [2?) - 1, 2(2 ') + l] 

y [v~] y [v~] 

~'  [2~ 2), ~ 2  ) + 2] ~ '  [2(?~ + 1, 2(22) - 1] 

fl '  [2~ 2~ + 1, 2(2 ~) + 11 fl, [~2), 2(22)1 

7' [2t 2) + 2, 2(22)] ~' [2~ 2) - 1, ~(22) + 1] 



Non-canonical Weyl tableau basis states 

Table 3. The relation between pq and xy 

Type I (ELEL) 

y: ~' ,8' 7' 

x: u pq = 44 34, 43 33 

/~ 24, 42 14, 23, 32, 41 13, 31 

7 22 12, 21 11 

Type I1 (EREL) 

Y: ~' /~' 7' 

x: c~ pq = 23 13, 24 14 

fl 21, 43 11, 22, 33, 44 12, 34 

7 41 31, 42 32 

Type IlI (ELER) 

y: c~' /~' 7' 

x: c~ pq = 32 31, 42 41 

fl 12, 34 11, 22, 33, 44 21, 43 

y 14 13, 24 23 
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So, there will be 3 x 3 = 9 kinds o f  shift caused by E2E 1 and it is also 
possible to use another  double index xy  (x = c~,/~, 7; Y = c~',/~', 7') to label the 9 
kinds of  shift, where x refers to the shift o f  [V~] and  y refers to that  o f  [V2]. 

Clearly, all the 16 cases o f p q  are included in the 9 kinds xy. In  Tables  1 and 
2 the explicit definitions o f  these pq and xy  are given, respectively, and in Table  
3 the relations between pq and xy  are listed. 

4. Details of  the recoupling procedure 

I t  was ment ioned  in [15] that  the opera tors  E L and ER t rans form as tensor 
operators .  Hence  the opera tors  E2E1 will t r ans form as double  tensor operators .  
In  principle, for  a system being coupled of  two parts ,  the reduced matr ix  element 
of  a double tensor  ope ra to r  can be factorized into a linear combina t ion  of  
products  o f  the reduced matr ix  elements o f  the two subgroups,  times a recou- 
piing coefficient depending only on the IRs  [17]. Therefore,  it is easy to reach the 
following conclusion by using the W i g n e r - E c k a r t  theorem repeatedly,  as in [ 15]: 
the matr ix  element of  a double tensor  opera to r  can be factorized into a linear 
combina t ion  of  products  o f  two subgroups '  matr ix  elements, times a similar 
recoupling coefficient being called the generalized recoupling coefficient. 

Because of  the special si tuation in the group U(n), the generators  of  the 
uni tary  group  U(n + 1), En + 1,t (t = 1, 2 , . . . ,  n), const i tute of  a vector  opera to r  
o f  U(n), and similarly for  the generators  o f  U(n + 2), En + 2.t (t = 1, 2 , . . . ,  n). So 
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the following three group chains have to be considered simultaneously: 

U(n 1 --}- n2) ~ U(nl) × U(n2), 

U(ni + 2) = U(n, + 1) = U(n~), 

U(n2 + 2) ~ U(n2 + 1) :::, U(n2). 

The general conclusion mentioned above can be obtained by a suitable 
recoupling procedure together with the embedding technique. We show in this 
section that for the three types ELEL, EREL and ELER, the following formulae 
hold respectively: 

(1) For E2El = ELEL, we have: 

[V]; [V'l][V;] E,~Ejb [V]; [Vll[V2]\ 
Wtl, Wt2 W1, W2/xy 

icy,,, + 211 
./tv~,,+,l I 

= ~ A',,q \ IV{] pq~xy 
\ - W~ , 

I tv,,:+'jl 
I [Vn2+ 1] . 

x ~ [v;J ~""+ 

\ w; 

(2) For EzE 1 = EREL, we have 

I v . , + 2 ] \  

En +laEnl÷2b [Vnl+ l ]  '~ 
1 , , [Vl] / 

W1 / pq 

+, ~v,,~+.,l\ 

W2 [ pq 

v '  v '  IV]; [V]; [ 1][ 2] E E [V1][V2]~ 
w,  r~l,I  ai 'jb WI , W2 / xy ,r 1~ rr 21 

/iv,,,+,_,j tVn,+ , l \  
= ~ A ; q {  tv,l IE,,,.,,,+,E,,,+,,,,I tv, l ) 

pqExy \ W'l I I Wl /Pq 

/[Vn2 t+. 1 ] [Vn2+ 1] / 
X t IV2] Enl+n2+l'iEj'nl+n2+l IV2] 

\ Wl  W 2 pq* 

(3) For E2E1 = ELE~, we have 

v '  ' IV]; [v] ; [  ,][z2] E E [Vl][V2]\ 
T~1',, l, T~l'l,v 21 ia bj WI ' W2 /xy 

I [v . ,  +,] [Vn~ ~ , ] \  
= ~ Apq'~ [V~] IEnl+l,aEDn,+i IV1] 7 pq~xy \ W~ I " WI pq 

/tv,,,+_,l I tvo~+,1\ 
X t [V.';,] E i n i + n . ~ + l E n l + n 2 + l ,  j [172] / 

\ W/2 ' W2 pq" 

(4.1) 

(4.2) 

(4.3) 
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In Eqs. (4.1) to (4.3) the summation runs over all the cases pq in the given 
kind xy. All matrix elements on the right-hand side are "partial matrix ele- 
ments" because the index pq limits the choices of the IR in the intermediate 
state [V';] x [V~] (see Table 1). 

We now direct our attention to obtain Eqs. (4.1) to (4.3). Concerning Eq. 
(4.3), the two-body operator matrix element appearing on the left-hand side 
can be turned into a sum of products of one-body matrix elements by the 
relation: 

[V]; [V'll[V;l r ~ I[vl; [V,][v2]\ 
w~, w'~ sz,~s~j w~, w2/xy 

v '  v '  IV]. = E E [v];[ ,'][ 2], E,a ,[V';][V~]\ 
[V'~]× [V~] IW~,W~)~[V'~]x[V~] Wl, W2[ W';, W T / p  

[vnl[v "]l [V]; IV1 ]IV2] k~ [V];, lit 2J E (4.4) 
X W';, Wt2 bj W1 ' W2/q .  

In Eq. (4.4) the first summation includes all the possible different IRs 
[V';] × [V~] for intermediate states, the second includes all the Weyl bases 
I WI', Wg) belonging to the given IR. So, all matrix elements of operator Eia 
under the second summation have the same index p of shift case, according to 
the relation between [V~] x [V~] and [V~'] x [V~]. Similarly, the matrix elements 
of operator Ebj have the same index q of shift case, according to the relation 
between IVY'] x [V~] and IV1] x [I/2]. Then the two one-body operator matrix 
elements in Eq. (4.4) can be calculated according to [15] as: 

[v]; I[v]. 
i , Lia I ' W1, W2 W';, W~ /~ 

/[VPl+ 1] [VPl+ 1] \ /[VP2+ 1] [WP2ff I ] \  
" ' E v n  " + 1 t Iv'J I",+',ol E '1 ) t Iv l Iv=l 7 ,  (4.5) 
\ Wtl t I W7 /p \ W'~ I W7 I.  

where 

[VP 1 + 1] ~ [V1], [VI t] 

CV~2+ 1] = [VT], [vT], 

and 

V" V" V [V];[ 1][ 2] ~ l[ ];[V1][V~]\ 
. . . . .  LbJ W1 ' m2/q  W1, w2 I 

/Evq.,+,l EVil+,]) /EW.2+11 
=A<,-~ [V~'] Eb..,+, [V,} " (  [VT} 

\ W7 Wl q \ W7 
where 

Ertl [Vnq2-1-1 ] \  +,,~+,j [V~] ) , 
W2 Iq 

(4.6) 

(4.7) 

[V~ 1 + 1] ~ [Vlt], IV1] 

[Vnq2_l_ 1] ~ IV2], [V2]. (4.8) 
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Substituting Eqs. (4.5), (4.7) into Eq. (4.4) and taking into account that 
Ap, Aq are only dependent on the IR, we get: 

; ' V' iV] [V,][ 21 . I[VI;iV1][Vz]\ 
_ , ..., lsi~Ebj W1, W2 / ) x y  W1, W2 

/[VP 1 --1] [VPl ~ 1]\ 
= 2 ApAq Z t [v~] IE.I [VI] ) [v'~] x [V~] IW'~, W~be[V'~] x [V~] + l>a 

\ wl  I I w'; / ,  

/[VPn2-- 1] [ VP2tt+q I] \ /[vq l-l- l] [Vnql+ 1]) 
X / IV2] Ei,nl+n2_t_ 1 [V21 ) t  [V]t] Eb'nl+l [vl] 

\ w; I W2 / p \  W 7 W 1 q 

[vq2__ 11 
IVY] E., 
w7 

[ Vq2-- 1]\ 
+n2+ 1,j [V2] ) 

w2 /q 

ApAqr 2 /[VPl -/- 1] [VPlt~ 1]\ 
[V'~ ]~[V~] [,W])~[V'~] I [Pill IEnl+l,a [VII ) 

\ W'I I W7 Ip 

[vql+ 1] [Vql+ 1] / ] 
[VT] ]Eb,nl+l [VI] 
Wtl I W 1 q 

/tvp :,l Ivp2,,+ 1}\ 
2 / Iv21 le;. , Ir j ) X iw~>~tvfi ] , a+.2+ 

\ wi I w~ /~ 

/[vq2+ 1] [vq2+ 1] / ] 
× ~ [V~] IE,~+,2+,,j [V2] • (4.9) 

\ w~ I w2 q 

Obviously, Eq. (4.9) can be contracted further when a suitable choice of IV,, + 1] 
and IV,2 + 1] satisfies: 

[V,I+,]=[VPl+,]=[vq,+,] and [V,2+,]=[V~2+,]=[vq2+I]. (4.10) 

Furthermore, according to Eqs. (4.6) and (4.8), [V,, + 1] and [ Vn 2 + 1 ] should also 
satisfy: 

[Vn,+,]=[V'~],[VT],[V,] and [V,2+,]=[V'2],[V~],[V2]. (4.11) 

Clearly, such choices of [Vn, + ,] and [V,2 + 1] do really exist for all possible 
cases pq of this type of operator ELER (later see Table 6). Therefore, Eq. (4.9) 
can be contracted to Eq. (4.3) with Apq = ApAq. 

Equation (4.2) for type EREL is obtained on a parallel way. As to Eq. (4.1) 
for type ELEr, however, this is a little more complicated, though we finally 
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arrive at a similar equation: 

I[V]; [Vl}rW'2] E E Icvl' [W, ltV2]\ 
t / ia 'jb WI, W2I I W,, W21~y 

~iv.., +,1 iv..,+ ll \  
= 2 ApSq E t [V~] IEni+l,a [U i ]  

W f f  , Ev'i]x[v~l Iw'~>~Ev'/l \ wi I I / p  

/ [ v q  1 + 1] [Vnql + 1]/ 1 
x ~ [G'] E,,,+,,,~ IV,] 

\ W7 WI q 

I / x Z { Evll IE,,.,+°~+, 

/[V~+,} [V~+~]/ 1 x ~ [Vd] Es,,,+,~+~ [V2] • (4.12) 

\ w~ w2 q 
This time one cannot find the desired [V,~ + 1] and [V,2 + ~] satisfying Eqs. (4.10) 
and (4.11). We illustrate this by the example pq = 44 corresponding to xy = c~'. 
In this case we have: 

[Vl] = [/~1), X (1)] [Wtl t] = [V,] - [0, 1] [V',] = [V,] -- [0, 2] 
(4.13) 

IV2] = [/~2), ~(22)] [V~] = [V2] + [0, 1] [V~] = [V2] + [0, 21. 

Therefore, the embedding of U(n~ + 1) and U(n2 + 1) into U(nl + 2) and 
U(n2 + 2) has to be considered. Accordingly, Eq. (4.1) can be obtained provided 
one can "equivalently" transform the right-hand side of Eq. (4.12) into: 

i /tv., +=11 itv., + =1\ 
E ApAq E ( [V'nl+'] ~ [v~,+~]~ 

rv ' l  t:"'+l'~ [V]'] / 
[vT]x[vfi] Iw'~>~[vT]\ t 1J 

X 
Vnl + 2] Enl IV', + ,} 
[Vl] 
W7 

[V~ 1 -#- 2 ] \  

Ev.,+lj\  ! 
+2~ tv,1 / / 

ml I q  J 

/ IV/n2+2] 

Z / [Vn2+l] 
iw'~>~v'~\ [V~] 

\ W~ 

E,,-~+-2+~ 

[Vn2+2] \ 
[V~+,]\ 

[G] / 
w~ /p 

X / [G2+2] /G, f V tt 
t n2+ lJ 

[v~] 
w~ 

+ n2-1- 1 

[v.2+;]\ 
[v.2+1]~ 

[v21 / 
W2 / q  

(4.14) 
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where, instead of Eq. (4.11), the following requirements should hold: 

[Vn 1+2] ~ [Vn 1+1], [V~ 1+1], [Vn+I] 

[V;I_I_I] =[V"I ]  , [V:I_I 1 ] ~[V ' ( ] ,  [Vn l÷ l  I = [V1]  
(4.15) 

V/ tt [Vn2+2 ] 723 [ n2 + 1], [Vn2 + 1], [Vn2+ 1] 

[V•2+l ] z) [V2] , [V ;2+ ,  ] = IV2], [Vn2+l ] = IV2]. 

The word "equivalently" means that the values of the four matrix elements 
in Eq. (4.14) are exactly equal to the four matrix elements on the right-hand side 
of Eq. (4.12). 

One can see that the following choice is reasonable for the case of pq = 44: 

[~/nl + 2] = IV1] 

[V~,,+,] =[V,]  - [ 0 ,  1] [V~,+,] =[V,]  - [ 0 ,  1] [V,,+,]  =[1/1] 

[V]] = [V1] - [0, 2] [VT] = [ V l ]  -- [0, 1] [V,l = [V,] 

[v.2+2] = [v2] + [0, 2] 

[V;2+~] =[V2] + [ 0 , 2 1  [V"2+1] =[Vz] + [0 ,  1] [V,2+ ~1 =[V2] + [0 ,  11 

[V~] = [1,721 + [0, 2] [V~] = [V2] + [0, 1] [V2] = [V2]. 

By this choice the above "equivalent" requirement holds for the following choice 
in Eq. (4.12): 

[w. ,+ , ]  ={Vl] - [0. 1] [vq ,+l ]  = [vl] 
(4.16) 

[VP2+,] = [V21 + [0, 21 [vq2+,] = [V2] + [0, 1]. 

Reasonable choices for all the shifts in the three types are given in Tables 4 
to 6, respectively. 

The corresponding generalized recoupling coefficients Apq = ApAq are ob- 
tained through a complicated and tedious derivation which is similar to that in 
[15] except for the different choice of Eq. (2.6). For the sake of simplification, we 
introduce to following formula: 

A~q = 

where p, q, x and y are indices of the 
the final state 

[V]; 

FpBqCxOy , (4.17) 

shifts. Fp, Cx depend on the parameters of 

[ v l ] [ v ; ] \  
w', w l  / 

Bq, Dy depend on those of the initial state 

[V]; [Vll[V2]\ . W I W 2  / 

Tables 7 and 8 give the explicit formulae. 
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Table 4. Reasonable choices of IRs for type I (ELEL) 
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Level Final Intermediate Initial 

x: o~ U(nl ÷ 2 ) [Vii [Vl] [Vi] 
U(n 1 ÷ 2) [Vl] --  [0, 1] [Vl] - -  [0, 1] [Vl] 

U(ni)  [Vi]  - [0, 2] [V1] - [0, 1]q _ 3,4 [V1] 

fl U(n 1 + 2) [Vl] [Vl] [Vl] 
U(r/1 ÷ 1) [VI] - - [ 0 ,  l ]q= 3,4 [VI] - - [ 0 ,  1]q_3A [V1] 

[V1] - -  [ l ,  O]q = 1,2 [V1] - [1, O]q = 1,2 
U(ni) [Vd - [1, 1] [V1] - [0, 1]q = 3, 4 IV1] 

[V1] --  [1, O]q __ 1,2 

U(n 1 + 2) [Vl] [V,] IV1] 
U(//1 ÷ l) [Vl] -- [1, O] [Vl] - [1, O] [V~] 

U(n l )  [Vii -- [2, O] [V,] -- [1, O]q_ 1,2 [Vii  

y: oV U(n2 + 2) [V21 + [0, 2] [V2] + [0, 2] [V2} + [0, 2] 
U(n2 + 1) [V2] + [0, 2] [1/2] + [0, 1] [V2] + [0, 1] 

U(n2) [V2] ÷ [0, 2] [V2] -}- [0, llq = 2,4 [V2] 

fl' U(n2 + 2 ) [V2] +[1,  1] [V2] +[1,  1] [V2] +[1 ,  1] 
U(n 2 + 1) [V2] + [1, 1] [V2] + [0, 1]q_ 2,4 [V2] + [0, 1]q=2, 4 

[V2] ÷ [1, O]q-  1,3 [V2] + [1, 0]q_ 1,3 
U(n2) [1/2] + [1, l] [V2] + [0, l ]q_2,  4 [I/2] 

[V2] -}- [1, 0]q_ 1,3 

7" U(n 2 + 2) [V2] + [2, O] [V2] + [2, O] [V2] + [2, O] 
U(n 2 + 1) [V2] + [2, O] [1/2] + [1, O] [1/2] + [1, O] 

U(n2) [V2] + [2, O] [1/2] + [1, O]q,l,3 [V2] 

Table 5. Reasonable choices of IRs for type II (EREL) 

Level Final Intermediate Initial 

X: ~ U(n 1 ÷ 1) [Vi] ÷ [1, O] [V1] - -  [1, O] [VI] ÷ [1, O] 
U(]'/1) [V1] ÷ [1, - l] [V1] - [0, 1]q = 3,4 [VI] 

]~ U(H 1 -J[- I) [Vl] [Vl] [Vl] 
U(H1) [Vl] [Vl] --  [0, 1]q = 3,4 [Vl] 

[V1] --  [1,  O]q= 1,2 

7 U(n 1 + 1) [V1] + [ 0 ,  1] [V1] + [ 0 ,  1] [Vl]  + [ 0 ,  1] 
U(rtl) [VI] + [-- 1, 1] [V1] - -  [1, O]q__ 1,2 [Wl] 

y: ~' U(n2+ 1 ) [V2] +[1,  O] [V2] + [1, O] [V2] + [1, O] 
U(n2) [//2] + [1, -- 1] [1/2] + [1, O]q_ ,,3 [1/2] 

fl' U(n2+ 1) [1/2]+[1,1] [Vz] +[1,  1] [1/2]+[1,1] 
U(n2) [V2] [V2] + [1, O]q_ 1,3 [V2] 

[V2] + [0, 1]q-2,a 

7" U(ne + 1) [V2I + [0, 1] [V2I + [0, 1] [V2I + [0, II 
U(n2) [1/'2] + [  1, 11 [V2I +[0,  1]q_2, 4 [V2I 
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Table 6. Reasonable choices of IRs for type III (ErE~) 
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Level Final Intermediate Initial 

x: ~ U(nx + 1) [V,I +[1, 01 [V,] + [1, 0] [Vl] +[1 ,0  ] 
U(nl) [V1] + [1, - 1] [V1] -~ [1, 0]q = 1,2 [V1] 

fi U(n 1 -}- 1) [Vx] + [1, 11 [Vt] + [1, 11 [V1] + [1, 11 
g(nl)  [Vl] [Vl] ÷ [0, l]q = 3,4 [Vl] 

[V1] + [1, 0]q = 1,2 

7 U(n 1 + 1) [1111 ÷ [0, 11 [Vii + [0, 11 [Vl] ÷ [0, 1] 
U(nl) [V1] + [--1, 1] [V1] ÷ [0, llq~3, 4 [vd  

y: c~' U(n2+ 1 ) [V21 + [1,0] [V2I +[1,01 [V21 +[1, Ol 
U(n2) [V2] -~-[1, -1 ]  [V2] - [0 ,  1]q~2,4 [V2] 

f l '  U(n= + 1) [1121 [V21 [V21 
U(nz) [V21 [Vz] - [1, 0]q = ,,3 [V21 

[V2] - [0, llq = 2.4 

?' U(n2 + 1) [V21 + [0, 11 [V2] + [0, 11 [V21 + [0, 11 
U(n2) [V21 + [ - 1 ,  11 [V21 - [I, 0lq= L3 [Vzl 

5. Example 

In  this section,  we give an  example  o f  type  I: 

U(8) ~ U(4) x U(4), 

namely:  

1 4 5 

2 ® 6  
[24; 13]; 4 7 

8 

6 

7 
~3/;62 8 

1 2 5 8 \  

) [24 , 13]; 2 4 ® 6 

3 7 ' 

4 8 ~ .  

in o rde r  to il lustrate h o w  to use the tables. F o r  this example:  

d = 4  

d~ = 3 d ;  = 2 A ' s  = 0 (2(22)) ' = 3 

dl = 3 d 2 = 4 As = 1 2(22) = 1 

x = f i  y = ~ ' .  

F r o m  Table  3, we see tha t  the two possibilities o f  pq  are pq = 24 and  pq  = 42 for  
x y  = fl~'. F r o m  Table  4, the I R s  co r r e spond ing  to y = e '  for  b o t h  pq  = 24 and  
42 are: 

final in termedia te  initial 

U(n2 -4- 2) [4, 31 [4, 3] [4, 3] 

U(n2 + 1) [4, 31 [4, 2] [4, 21 

U(n2) [4, 31 [4, 21 [4, 11 
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Table 7. Formulae for Fp, Bq 

Type I ( E z E L )  

p,  q Fp Bq 

( -  1)<~,),+ .~  _~ /(d~ - A_ '~)(dl  - _ 1  - A 's) 
d ~ ( d ' 2 -  1) 

1)(42~), _ 1 / ( d ]  + d'2 - A ' s ) (A ' s  + 1) ( 
x~ d~ ( 4  + 1) 

1)(2t2)) l / ( d {  + d'2 - i - A 's)A "s ( 
x/ d~ ( G  - l) 

( _ 1)(4 2~) + a ~ - 1 (d l  1 - a 's)(d'2 - A 's) 

4 -d~ (d i + 1) 

/ 

1)~f2)+ a ~ / ( d  I - -  1 - d s ) ( d  2 - As)  ( -  
( 4  - 1)4  

,2) ] (d l  + d2 - 1 - A s ) A s  
( -  1) ~ I - -  

~,2, / ( d l  + de - As ) (  1 + As)  
( - 1 )  t / -- 

1 ) ~  + ~ / ( d  1 - ds ) (d2  - 1 - As)  ( 
(dl + 1)d2 

Type II ( E R E L ) .  The Bq are the same as the Fp except 
without prime 

p F.(B~) 

! 

1)(~f2~), + ~,s / ( d ]  -(c~ Z l ~ 2  ~ 1 - A ' s ) (d '  2 - A ' s) ( 

1)(~2)y/(d ~ + d'  2 - 1 - A ' s ) A '  s 
( q (d] - 1)(d; - 1) 

1)(2t2)),/(d ~ + d~ - A 's)(1 + A 's) ( 1 

(d] + l)(d~ + 1) 

a , s / ( d ]  - -  A ' s)(d'2 - 1 - A ' s) 
( 

Type III ( E r E R ) .  The Bq are the same as the Fp except 
without prime 

p Fp(Bq)  

/ 

A's - 1 / ( d ]  - -  A ' s)(d'2 - 1 - A " s) ( 1)(at2))" + 
(d~ + 1 ) ( d ; -  1) 

/ 

1)(~2)), 1 / ( d ' l  + d '  2 - -  A 's)(A "s + 1) ( 
V (d~ + 1)(d; + 1) 

I 
_ 1 / ( d ~  + d'2 - 1 - A ' s ) A ' s  ( 1)(~t2))" q (d', - 1 ) ( d ; -  l) 

1 

1)(~2>)" + w,  - 1 / (  d l  - -  1 - A "s)(d'2 - A ' s) ( 
(G  - 0 ( 4  + l) 



430 Hai-lun Lin 

Table 8. Formulae for Cx, Dy 

The IRs corresponding to x = /?  are: 

final intermediate initial  

F r o m  Tables 7 and  8 we obtain:  

For  pq = 24, we get: 

For  pq = 42, we get: 
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So we have: 

1 4 5 
[2  4, 13]; 2 ® 6 

4 7 

8 

6 

7 
8 E73 E62 

1 2 5 8 \  
[24,13];2 4 ® 6 

3 7 

4 8 ~, 

(14  6 / 
= A ~  4 2 6 2 4 7 

4 3 8 7 10 

5 4 q = 24 8 pq = 24 

/i 4 i21/  6 "~ A 42 5 E53 E62 4 7 

8 
q = 42 8 

I 1 2 i 1 2 
= Az4M24M24 q- A42M42M42. 

e7,1oe~9 
5 

Substituting all the parameters, combining the basic calculation of  two-body 
operator matrix elements in [6], we obtain: 

6 

2 
M~4 - 

1 
M 1 2  = _ _ _  

M4 2 = 

Finally: 

This result may be checked by the following steps: (1) transform the non-canon- 
ical bases into the canonical ones by the subduction coefficients of [15]; (2) 
calculate the linear combination of two-body matrix elements between the 
canonical bases in U(n). 
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